Back Home Top Next

Unit 1: Topic 4: Rationalization of Radicals

Competencies

·         Explain the notion of rationalization.

·         Identify a rationalizing factor for a given expression.

Suggested ways of teaching this topic: Explanation by the Teacher and Practice of Students

Starter Activities

The teacher may start with revising the rules for multiplying and dividing radicals using examples:

The rules are:

1.       http://www.themathpage.com/alg/Alg_IMG/311.gif

http://www.themathpage.com/alg/Alg_IMG/314.gif2.

Let students do the problems themselves first then the teacher might summarize.

Example 1:   Multiply.

   a)  

http://www.themathpage.com/alg/Alg_IMG/sq3.gif· http://www.themathpage.com/alg/Alg_IMG/sq5.gif = http://www.themathpage.com/alg/Alg_IMG/sq15Gr.gif

 

b)  2http://www.themathpage.com/alg/Alg_IMG/sq6.gif· 3http://www.themathpage.com/alg/Alg_IMG/sq7.gif = 6http://www.themathpage.com/alg/Alg_IMG/sq42Gr.gif

   c)  

http://www.themathpage.com/alg/Alg_IMG/sq18.gif· http://www.themathpage.com/alg/Alg_IMG/sq2.gif = http://www.themathpage.com/alg/Alg_IMG/sq36Gr.gif

  = 6

d)  (2http://www.themathpage.com/alg/Alg_IMG/sq5.gif)² = 4· 5 = 20

 

   e)  

http://www.themathpage.com/alg/Alg_IMG/312.gif = http://www.themathpage.com/alg/Alg_IMG/313.gif

  

 

The difference of two squares

http://www.themathpage.com/alg/alg_IMG/499.gifExample 2:   Multiply, and then simplify:

a)       

 

b)      (http://www.themathpage.com/alg/Alg_IMG/sq6.gif + http://www.themathpage.com/alg/Alg_IMG/sq2.gif)(http://www.themathpage.com/alg/Alg_IMG/sq6.gifhttp://www.themathpage.com/alg/Alg_IMG/sq2.gif).

Solution:   

1.      http://www.themathpage.com/alg/alg_IMG/488.gif

 

2.      The student should recognize the form those factors will produce.

The difference of two squares

(http://www.themathpage.com/alg/Alg_IMG/sq6.gif + http://www.themathpage.com/alg/Alg_IMG/sq2.gif)(http://www.themathpage.com/alg/Alg_IMG/sq6.gifhttp://www.themathpage.com/alg/Alg_IMG/sq2.gif)

=

(http://www.themathpage.com/alg/Alg_IMG/sq6.gif)² − (http://www.themathpage.com/alg/Alg_IMG/sq2.gif

 

=

6 − 2

 

=

4.

Practice and Consolidation is needed here! Thus, the teacher should guide students to recognize the forms of “difference of two squares” letting them practice on products of the following type.

Lesson Notes

Example 3:  Multiply.

a)   (http://www.themathpage.com/alg/Alg_IMG/sq5.gif+ http://www.themathpage.com/alg/Alg_IMG/sq3.gif)(http://www.themathpage.com/alg/Alg_IMG/sq5.gifhttp://www.themathpage.com/alg/Alg_IMG/sq3.gif)  =  5 − 3 = 2

b)   (2http://www.themathpage.com/alg/Alg_IMG/sq3.gif+ http://www.themathpage.com/alg/Alg_IMG/sq6.gif)(2http://www.themathpage.com/alg/Alg_IMG/sq3.gifhttp://www.themathpage.com/alg/Alg_IMG/sq6.gif)  =  4· 3 − 6 = 12 − 6 = 6

c)   (1 + http://www.themathpage.com/alg/Alg_IMG/sq-x+1.gif)(1 − http://www.themathpage.com/alg/Alg_IMG/sq-x+1.gif)  =  1 − (x + 1)  =  1 − x − 1  =  −x

d)   (http://www.themathpage.com/alg/Alg_IMG/sq-a.gif+ http://www.themathpage.com/alg/Alg_IMG/sq-b.gif)(http://www.themathpage.com/alg/Alg_IMG/sq-a.gifhttp://www.themathpage.com/alg/Alg_IMG/sq-b.gif)  =  ab

Example 4:   Given (x − 1 http://www.themathpage.com/alg/Alg_IMG/sq2.gif) (x − 1 + http://www.themathpage.com/alg/Alg_IMG/sq2.gif)

a)   What form does that produce?

Expected Answer:

The difference of two squares of the form a2- b2, where (x– 1) is "a" and http://www.themathpage.com/alg/Alg_IMG/sq2Gr.gifis "b"

b)  Find the final product.

(x − 1 − http://www.themathpage.com/alg/Alg_IMG/sq2.gif)(x − 1 + http://www.themathpage.com/alg/Alg_IMG/sq2.gif)

=

(x − 1)² − 2

 

 

=

x² − 2x + 1 − 2,

 

On squaring the binomial,

 

=

x² − 2x − 1

 

Example 5:   Multiply.

(x + 3 + http://www.themathpage.com/alg/Alg_IMG/sq3.gif)(x + 3 − http://www.themathpage.com/alg/Alg_IMG/sq3.gif)

=

(x + 3)² − 3

 

=

x² + 6x + 9 − 3

 

=

x² + 6x + 6

 

 

Example 6:   Simplify the following.

   a)  

http://www.themathpage.com/alg/Alg_IMG/sq6U.gif
http://www.themathpage.com/alg/Alg_IMG/sq3.gif

  = 

http://www.themathpage.com/alg/Alg_IMG/sq2Gr.gif

 

b)   

http://www.themathpage.com/alg/Alg_IMG/316.gif
8http://www.themathpage.com/alg/Alg_IMG/sq2.gif

  =  

3
4

http://www.themathpage.com/alg/Alg_IMG/sq5Gr.gif

 

c)   

http://www.themathpage.com/alg/Alg_IMG/317.gif
 http://www.themathpage.com/alg/Alg_IMG/sq-a.gif

  =  

ahttp://www.themathpage.com/alg/Alg_IMG/sq-a2Gr.gif

  =  

a· a

 = 

a²

< TR>

 

What are Conjugate pairs?

The conjugate of a + http://www.themathpage.com/alg/Alg_IMG/sq-b.gif is ahttp://www.themathpage.com/alg/Alg_IMG/sq-b.gif.  They are a conjugate pair.

Example 7:   Multiply 6 − http://www.themathpage.com/alg/Alg_IMG/sq2.gif with its conjugate.

Solution:  The product of a conjugate pair is the difference of two squares

(6 http://www.themathpage.com/alg/Alg_IMG/sq2.gif)(6 + http://www.themathpage.com/alg/Alg_IMG/sq2.gif)  = 36 − 2 = 34

CONCLUSION

When we multiply a conjugate pair, the radical vanishes and we obtain a rational number.This process is called Rationalization.

Example 8:   Multiply each number with its conjugate.

  1. x + http://www.themathpage.com/alg/Alg_IMG/sq-y.gif    = http://www.themathpage.com/alg/Alg_IMG/318.gif= x² − y
  2. 2 − http://www.themathpage.com/alg/Alg_IMG/sq3.gif   = (2 − http://www.themathpage.com/alg/Alg_IMG/sq3Gr.gif)(2 + http://www.themathpage.com/alg/Alg_IMG/sq3Gr.gif) = 4 − 3 = 1
  3. http://www.themathpage.com/alg/Alg_IMG/sq6.gif + http://www.themathpage.com/alg/Alg_IMG/sq2.gif

This time, students should be able to write the product immediately:  6 − 2 = 4

  1. 4 − http://www.themathpage.com/alg/Alg_IMG/sq5.gif  = 16 − 5 = 11

Example 9:   Rationalize the denominator of

Solution:  

Multiply both the denominator and the numerator by the conjugate of the denominator; that is, multiply them by 3−.

    1    
http://www.themathpage.com/alg/Alg_IMG/319.gif

=

http://www.themathpage.com/alg/Alg_IMG/320.gif
 9 − 2

=

http://www.themathpage.com/alg/Alg_IMG/320.gif
    7

The numerator becomes 3−http://www.themathpage.com/alg/Alg_IMG/sq2.gif.  The denominator becomes the difference of the two squares.

http://www.themathpage.com/alg/Alg_IMG/321.gifExample 10: Rationalize the denominator of

 Solution:

http://www.themathpage.com/alg/Alg_IMG/321.gif

=

http://www.themathpage.com/alg/Alg_IMG/322.gif
     3 − 4

 

=

http://www.themathpage.com/alg/Alg_IMG/323.gif
      −1

 

=

−(3 − 2http://www.themathpage.com/alg/Alg_IMG/sq3.gif)

 

=

2http://www.themathpage.com/alg/Alg_IMG/sq3.gif − 3

Example 11:   Write out the steps that show each of the following equivalences.

  a)   

      1     
http://www.themathpage.com/alg/Alg_IMG/324.gif

  =  ½(http://www.themathpage.com/alg/Alg_IMG/325.gif)

 

 

      1     
http://www.themathpage.com/alg/Alg_IMG/324.gif

  =  

http://www.themathpage.com/alg/Alg_IMG/326.gif
  5 − 3

  =  

http://www.themathpage.com/alg/Alg_IMG/326.gif
     2

  =  

½(http://www.themathpage.com/alg/Alg_IMG/sq5Gr.gifhttp://www.themathpage.com/alg/Alg_IMG/sq3Gr.gif)

 

  b)   

     2    
3 + http://www.themathpage.com/alg/Alg_IMG/sq5.gif

  =  ½(3 − http://www.themathpage.com/alg/Alg_IMG/sq5.gif)

 

 

     2    
3 + http://www.themathpage.com/alg/Alg_IMG/sq5.gif

  =  

http://www.themathpage.com/alg/Alg_IMG/327.gif
  9 − 5

  =  

http://www.themathpage.com/alg/Alg_IMG/327.gif
      4

  =  

½(3 − http://www.themathpage.com/alg/Alg_IMG/sq5Gr.gif)

 

  c)   

     _7_    
3http://www.themathpage.com/alg/Alg_IMG/sq5.gif + http://www.themathpage.com/alg/Alg_IMG/sq3.gif

  =  

http://www.themathpage.com/alg/Alg_IMG/328.gif
     6

 

 

     _7_    
3http://www.themathpage.com/alg/Alg_IMG/sq5.gif + http://www.themathpage.com/alg/Alg_IMG/sq3.gif

  =  

http://www.themathpage.com/alg/Alg_IMG/329.gif
  9· 5 − 3

  =  

http://www.themathpage.com/alg/Alg_IMG/329.gif
      42

  =  

http://www.themathpage.com/alg/Alg_IMG/330.gif
      6

 

 

 

 

 

 

 

 

 

  d)   

http://www.themathpage.com/alg/Alg_IMG/331.gif
http://www.themathpage.com/alg/Alg_IMG/sq2.gif− 1

  =  

3 + 2http://www.themathpage.com/alg/Alg_IMG/sq2.gif

 

 

http://www.themathpage.com/alg/Alg_IMG/331.gif
http://www.themathpage.com/alg/Alg_IMG/sq2.gif− 1

  =  

http://www.themathpage.com/alg/Alg_IMG/332.gif
  2 − 1

  =  

2 + 2http://www.themathpage.com/alg/Alg_IMG/sq2Gr.gif + 1,

 

 

 

  Example 12:    Simplify  

http://www.themathpage.com/alg/Alg_IMG/346.gif

At every step of the solution the teacher is expected to ask the students to give reasons.

 Solution:

http://www.themathpage.com/alg/Alg_IMG/346.gif

=

http://www.themathpage.com/alg/Alg_IMG/347.gif

  Why?

 

=

http://www.themathpage.com/alg/Alg_IMG/348.gif

 Why?

 

=

http://www.themathpage.com/alg/Alg_IMG/349.gif
       6 − 5

 Why?

 

=

6http://www.themathpage.com/alg/Alg_IMG/sq5.gif − 5http://www.themathpage.com/alg/Alg_IMG/sq6.gif

 Why?

.

 

  Example 13:    Simplify  

http://www.themathpage.com/alg/Alg_IMG/342.gif

 

  

http://www.themathpage.com/alg/Alg_IMG/342.gif

=

http://www.themathpage.com/alg/Alg_IMG/343.gif

 

Why?

 

=

http://www.themathpage.com/alg/Alg_IMG/344.gif

 

Why?

 

=

http://www.themathpage.com/alg/Alg_IMG/345.gif
    3 − 2

 

Why?

 

=

3http://www.themathpage.com/alg/Alg_IMG/sq2Gr.gif + 2http://www.themathpage.com/alg/Alg_IMG/sq3Gr.gif

 

Why?

Concluding Activities

Make sure that the students summarize that rationalization of the denominator can be done by multiplying both the denominator and the numerator by the conjugate of the denominator. Check if every student has developed the skill of rationalizing radical expressions by giving them practice exercises.

Practice Exercises

1.      Rationalize the following by multiplying with an appropriate conjugate and simplify

a)        

b)        

2.      Rationalize the denominator and simplify

a)

b)

c)

d)

e)

f)

g)

h)